- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Hu, Yilin (2)
-
Kang, Wonchull (2)
-
Lee, Chi Chung (2)
-
Rettberg, Lee A. (2)
-
Ribbe, Markus W. (2)
-
Stiebritz, Martin T. (2)
-
Hiller, Caleb J. (1)
-
Liedtke, Jasper (1)
-
Lovley, Derek R. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Nitrogenase iron (Fe) proteins reduce CO 2 to CO and/or hydrocarbons under ambient conditions. Here, we report a 2.4-Å crystal structure of the Fe protein from Methanosarcina acetivorans ( Ma NifH), which is generated in the presence of a reductant, dithionite, and an alternative CO 2 source, bicarbonate. Structural analysis of this methanogen Fe protein species suggests that CO 2 is possibly captured in an unactivated, linear conformation near the [Fe 4 S 4 ] cluster of Ma NifH by a conserved arginine (Arg) pair in a concerted and, possibly, asymmetric manner. Density functional theory calculations and mutational analyses provide further support for the capture of CO 2 on Ma NifH while suggesting a possible role of Arg in the initial coordination of CO 2 via hydrogen bonding and electrostatic interactions. These results provide a useful framework for further mechanistic investigations of CO 2 activation by a surface-exposed [Fe 4 S 4 ] cluster, which may facilitate future development of FeS catalysts for ambient conversion of CO 2 into valuable chemical commodities. IMPORTANCE This work reports the crystal structure of a previously uncharacterized Fe protein from a methanogenic organism, which provides important insights into the structural properties of the less-characterized, yet highly interesting archaeal nitrogenase enzymes. Moreover, the structure-derived implications for CO 2 capture by a surface-exposed [Fe 4 S 4 ] cluster point to the possibility of developing novel strategies for CO 2 sequestration while providing the initial insights into the unique mechanism of FeS-based CO 2 activation.more » « less
-
Rettberg, Lee A.; Stiebritz, Martin T.; Kang, Wonchull; Lee, Chi Chung; Ribbe, Markus W.; Hu, Yilin (, Chemistry – A European Journal)
An official website of the United States government
